Slow recovery from inactivation regulates the availability of voltage-dependent Na(+) channels in hippocampal granule cells, hilar neurons and basket cells.

نویسندگان

  • R K Ellerkmann
  • V Riazanski
  • C E Elger
  • B W Urban
  • H Beck
چکیده

1. Fundamental to the understanding of CNS function is the question of how individual neurons integrate multiple synaptic inputs into an output consisting of a sequence of action potentials carrying information coded as spike frequency. The availability for activation of neuronal Na(+) channels is critical for this process and is regulated both by fast and slow inactivation processes. Here, we have investigated slow inactivation processes in detail in hippocampal neurons. 2. Slow inactivation was induced by prolonged (10-300 s) step depolarisations to -10 mV at room temperature. In isolated hippocampal dentate granule cells (DGCs), recovery from this inactivation was biexponential, with time constants for the two phases of slow inactivation tau(slow,1) and tau(slow,2) ranging from 1 to 10 s and 20 to 50 s, respectively. Both (slow,1) and tau(slow,2) were related to the duration of prior depolarisation by a power law function of the form tau(t) = a (t/a)b, where t is the duration of the depolarisation, a is a constant kinetic setpoint and b is a scaling power. This analysis yielded values of a = 0.034 s and b = 0.62 for tau(slow,1) and a = 24 s and b = 0.30 for tau(slow,2) in the rat. 3. When a train of action potential-like depolarisations of different frequencies (50, 100, 200 Hz) was used to induce inactivation, a similar relationship was found between the frequency of depolarisation and both tau(slow,1) and tau(slow,2) (a = 0.58 s, b = 0.39 for tau(slow,1) and a = 3.77 s and b = 0.42 for tau(slow,2)). 4. Using nucleated patches from rat hippocampal slices, we have addressed possible cell specific differences in slow inactivation. In fast-spiking basket cells a similar scaling relationship can be found (a = 3.54 s and b = 0.39) as in nucleated patches from DGCs (a = 2.3 s and b = 0.48) and non-fast-spiking hilar neurons (a = 2.57 s and b = 0.49). 5. Likewise, comparison of human and rat granule cells showed that properties of ultra-slow recovery from inactivation are conserved across species. In both species ultra-slow recovery was biexponential with both tau(slow,1) and tau(slow,2) being related to the duration of depolarisation t, with a = 0.63 s and b = 0.44 for tau(slow,1) and a = 25 s and b = 0.37 for tau(slow,2) for the human subject. 6. In summary, we describe in detail how the biophysical properties of Na(+) channels result in a complex interrelationship between availability of sodium channels and membrane potential or action potential frequency that may contribute to temporal integration on a time scale of seconds to minutes in different types of hippocampal neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of voltage-dependent sodium channels by the delta-agonist SNC80 in acutely isolated rat hippocampal neurons.

Following activation, voltage-gated Na+ currents (I(Na)) inactivate on two different time scales: fast inactivation takes place on a time scale of milliseconds, while slow inactivation takes place on a time scale of seconds to minutes. Both fast and slow inactivation processes govern availability of Na+ channels. In this study, the effects of the delta-opioid receptor agonist SNC80 on slow and ...

متن کامل

Resurgent Na currents in four classes of neurons of the cerebellum.

Action potential firing rates are generally limited by the refractory period, which depends on the recovery from inactivation of voltage-gated Na channels. In cerebellar Purkinje neurons, the kinetics of Na channels appear specialized for rapid firing. Upon depolarization, an endogenous open-channel blocker rapidly terminates current flow but prevents binding of the "fast" inactivation gate. Up...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata.

Because of their strategic position between the granule cell and pyramidal cell layers, neurons of the hilar region of the hippocampal formation are likely to play an important role in the information processing between the entorhinal cortex and the hippocampus proper. Here we present an electrophysiological characterization of anatomically identified neurons in the fascia dentata as studied us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 532 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2001